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Introduction 
 

1.1. Professional training 
This course will explain the nonlinear and stability calculations in SCIA Engineer. Most of the modules 
necessary for this calculation are included in the Professional edition .  
For some options a concept edition is sufficient or for other options an expert edition or an extra module is 
required. This will always be indicated in the corresponding paragraph. 
 

1.2. Introduction to nonlinear and stability 
In the first part of this course, stability calculations will be introduced. Such a calculation determines the 
elastic critical buckling load of a structure. This analysis can be used to calculate the buckling length of a part 
of the structure or to determine whether a 2nd order analysis should be carried out. 
 
In the second part, the course will explain how to introduce different nonlinear behaviours in a structure. First 
the 2nd and 3rd order calculation methods are explained and integrated with Eurocode 3. Next the local 
nonlinearities are examined including tension-only members, pressure-only supports, cable analysis, friction 
supports, etc. and finally concluded with physical nonlinearities.  
 
Then, a small chapter will explain the integration of these nonlinear behaviours into the stability calculation.  
 
The final chapter provides some common failure messages which occur during a nonlinear analysis. This 
chapter points out the most likely causes of singularities and convergence failures. 
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Stability Calculations 
 
A stability calculation calculates the global buckling mode (eigenmode) of a structure under the given 
loading. In addition, the ratio between the buckling load and the applied load is given. 
 
Stability calculations are used to obtain an insight into the buckling mechanisms of a structure, to calculate 
the buckling length of a member for use in the Steel Code Check, to verify if 2nd Order calculations are 
required, … 

2.1 Stability Combinations 
For a stability calculation, the principle of superposition does not hold. Every combination of loads will require 
a separate calculation. The combinations have to be assembled before starting the calculation. In SCIA 
Engineer, this is done by defining stability combinations . 
 

 
 
A stability combination is defined as a list of load cases where each load case has a specified coefficient. 
 

 
 
It is also possible to import the linear combinations as stability combinations. Choose the option New from 
linear combinations , select the desired combinations and click on close. The selected combinations will be 
added as stability combinations.  
 

2.2 Linear Stability 
During a linear stability calculation, the following assumptions are used: 

• Physical linearity. 
• The elements are taken as ideally straight and have no imperfections. 
• The loads are guided to the mesh nodes, it is mandatory to refine the finite element mesh in order to 

obtain precise results. 
• The loading is static. 
• The critical load coefficient is, per mode, the same for the entire structure. 
• Between the mesh nodes, the axial forces and moments are taken as constant. 
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The equilibrium equation can be written as follows: �K� − K�� ∙ u = F 
 
The symbol u depicts the displacements and F is the force matrix. 
 
As specified in the theory of the Timoshenko method, the stiffness K is divided in the elastic stiffness KE and 
the geometrical stiffness KG. The geometrical stiffness reflects the effect of axial forces in beams and slabs. 
 
The basic assumption is that the elements of the matrix KG are linear functions of the axial forces in the 
members. This means that the matrix KG corresponding to a λth multiple of axial forces in the structure is the 
λth multiple of the original matrix KG. 
 
The aim of the buckling calculation is to find such a multiple λ for which the structure loses stability. Such a 
state happens when the following equation has a non-zero solution: �K� − λ ∙ K�� ∙ u = 0 
 
In other words, such a value for λ should be found for which the determinant of the total stiffness matrix is 
equal to zero: K� − λ ∙ K� = 0 
 
Similar to the natural vibration analysis, the subspace iteration method is used to solve this eigenmode 
problem. As for a dynamic analysis, the result is a series of critical load coefficients λ with corresponding 
eigenmodes. 
 

2.3 Manual calculation of K G 
The principle of a stability calculation and the meaning of the matrix KG will be explained with a simple 
example. 
 
Suppose the next situation: 

 

 
This beam with length L has a pinned support at the left and a flexible spring support at the right with rigidity: 
KE. 
 
Two point loads are inputted on the beam: a vertical R and a compression force N. 
 
Standard analysis says that R and N are independent (in the non-deformed configuration) and the stiffness 
relationship is: KE ∙ r = R 

 
With r the vertical translation of the right point of the beam. 
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But, if the structure is allowed to deform, we can calculate equilibrium in the deformed configuration as 
shown below: 

 

 
Summing moments about the pinned end we get: R ∙ L + N ∙ r = S ∙ L 

 
The equation for the response of the spring is: KE ∙ r = S 
 

Substituting S we get: R ∙ L + N ∙ r = (KE ∙ r) ∙ L 

 

Dividing by L: 

R + NL ∙ r = KE ∙ r 

 

And grouping terms we have: 

R = (KE − NL) ∙ r 

 

This can further be re-written if we define the geometric stiffness as:  

KG = NL 

 

giving the final form as: R = (KE − KG) ∙ r 

Or: �KE − KG� ∙ u = F 
 

When the normal force N is multiplied with a factor αcr so that the total rigidity becomes zero: 

KE − αcr ∙ NL = 0 

 
The structure will buckle and become “unstable”. 
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2.4 Performing the calculation & examples 
 
To perform a Stability calculation, the stability  functionality must be activated. 

 
 

The λ values can be found under the caption  
The number of critical coefficients to be calculated per stability combination can be specified in the solver 
settings , as well as the solver method to be used in the calculation. Lanczos is chosen by default, because 
it gives fast and good results, but in some cases it will fail to find the solution. In these cases you can try the 
other, slightly slower, methods to obtain a result.  
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Notes: 
• The first eigenmode is usually the most important and corresponds to the lowest critical load 

coefficient. A possible collapse of the structure usually happens for this first mode. 
• The structure becomes unstable for the chosen combination when the loading reaches a value equal 

to the current loading multiplied with the critical load factor. 
• A critical load factor smaller than 1 signifies that the structure is unstable for the given loading. 
• Since the calculation searches for eigen values which are close to zero, the calculated λ values can 

be both positive or negative.  
A negative critical load factor signifies a tensile load. The loading must thus be inversed for buckling 
to occur (which can for example be the case with wind loads). 

• The eigenmodes (buckling shapes) are dimensionless. Only the relative values of the deformations 
are of importance, the absolute values have no meaning. 

• For shell elements the axial force is not considered in one direction only. The shell element can be in 
compression in one direction and simultaneously in tension in the perpendicular direction. 
Consequently, the element tends to buckle in one direction but is being ‘stiffened’ in the other 
direction. This is the reason for significant post-critical bearing capacity of such structures.  

• It is important to keep in mind that a Stability Calculation only examines the theoretical buckling 
behaviour of the structure. It is thus still required to perform a Steel Code Check to take into account 
Lateral Torsional Buckling, Section Checks, Combined Axial Force and Bending,… 
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Example: Buckling_Frame.esa  
 
A stability analysis is performed on a steel frame. The first three buckling modes are calculated and the 
buckling loads are compared to the analytical results from ref.[25] to obtain a benchmark for the stability 
calculation of SCIA Engineer. 

 
 
To obtain precise results, the number of 1D elements is refined in the mesh settings . 

 
 
In the solver setup  the number of critical values  can be specified. In addition, the shear force 
deformation  is neglected to have a good comparison with the analytical results. 

 
 
After executing a stability calculation, the following critical load coefficients are obtained: 
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The corresponding buckling modes can be shown under 3D deformations  for the stability combination . 
 
Buckling mode 1 – Critical load factor λ = 2,22 

 
 
Buckling mode 2 – Critical load factor λ = 2,89 

 
 
Buckling mode 3 – Critical load factor λ = 3,54 

 
 
The loading F on each column is 100 kN so the critical buckling load Ncr can be calculated as: N�� = λ ∙ F 
 
This gives the following results which can be compared to the analytical calculation: 

Ncr for SCIA Engineer Ref.[25] 
Buckling Mode 1 222 kN 221.5 kN 
Buckling Mode 2 289 kN 289.6 kN 
Buckling Mode 3 354 kN 353.8 kN 
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Example: Buckling_Arch.esa  
 
When calculating for example an arched steel bridge, one of the required parameters for a steel code check 
is the buckling length of the arch. Using a stability calculation, the buckling factor of any member can be 
obtained. 
 
As an example, a steel parabolic arch is modelled with two fixed end points. The arch has a horizontal length 
of 10m, height 2m and is loaded by a vertical line load of 30 kN/m . 
 

 
 
The shear force deformation  is neglected to have a good comparison with analytical results. Using an 
average mesh size on curved 1D members  of 0,1m, a stability calculation  yields a critical load factor of 
0,46. 

 
 

 
 
The first buckling mode has the following shape: 
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This result can be checked using an analytical formula from Ref.[27]. The critical line load for a fixed-fixed 
arch with height 20% of the support distance is given as: 

P�� = 103,2 EIL³ 
 
With: E = Modulus of Young = 210000 N/mm² 

I = Moment of inertia = 666666,67 mm4 
L = Distance between supports = 10000 mm 

 Pcr = 14,448 kN/m 

 
The loading P on the structure was 30 kN/m so the critical load coefficient can be calculated as: 

λ = p��P = 14,448 kN/m30 kN/m = ), *+ 

 
This result corresponds to the result of SCIA Engineer. 
 
Using the critical load coefficient, the buckling load of the arch can be calculated. The minimal normal force 
N under the given loading is 195,82 kN. The minimal is used since this will give a conservative result for the 
buckling length. 
 

 
 
The buckling load Ncr can then be calculated as: ,-. = / ∙ , = 0,46 ∙ 195,82 = 3), )445 67 
 
Applying Euler’s formula, the buckling factor k can be calculated: 

N�� = π² ∙ E ∙ I(k ∙ s);  

  k = <= ∙ >?²∙�∙@ABC  

 
In which s specifies the arch length of 10,982m 
 
The parameters can now be inputted: 

k = 1s ∙ Dπ² ∙ E ∙ IN�� = 110982mm ∙ Dπ² ∙ 210000N/mm² ∙ 666666,67mmF
90077,2N = ), GH 

 
This buckling factor can now be inputted in the buckling data of the arch so it can be used for a steel code 
check. 
 
This example illustrates the use of a stability calculation for a simple arch. The same procedure can now be 
applied to more complex structures like arched bridges, truss beams, concrete buildings,… 
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Example: Buckling_Arch_FEM.esa  
 
To illustrate the use of stability in finite element calculations, the arched bridge of the previous example is 
modelled as a shell element. 
 

 
 
Using an average mesh size of 2D elements  of 0,1m, a stability calculation  yields the following critical 
load factor: 
 

 
 
The corresponding buckling mode can be shown by viewing the 3D deformations 
 
 

 
The result corresponds to the analytical solution shown in the previous example. 
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Example: Buckling_Arbitrary_Profile.esa  
 
In this example, the buckling load for a composed column is calculated. The column has a variable section 
consisting of two different cross-sections. 
The critical buckling load is compared with the analytical result from Ref.[6]. 

 
 
The loading is taken as 1 kN so the critical load coefficient equals the critical buckling load. To obtain a 
correct comparison with the analytical calculation, the shear force deformation  is neglected: 
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The formula for the buckling load of a member with arbitrary cross-section is given in Ref.[6], pp.114 by 
formula (2-48): 

P�� 	 m ∙ E ∙ I;l²  

With m a parameter depending on the length of the different sections and the ratio I1/I2. This parameter is 
specified in table 2-10 of Ref.[6]. 

I1 8.356 107 mm4 
I2 4.190 108 mm4 
a 4 m 
l 10 m 
a/l 0.4 
I1/I2 0.2 
m 4.22 
Pcr 3713 kN 

 
A stability calculation  gives the following result: 

 
 
This result corresponds to the analytical solution. 
The corresponding buckling mode has the following shape: 

 

Note: the buckling shapes can be animated through New Animation Window 
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Nonlinear behavior of Structures 

3.1 Type of Nonlinearity 
 
The nonlinear behaviour of structures can be categorised in three different groups: 

• Geometrical nonlinearity : the displacements are dependent on the strains in a nonlinear way. 
• Physical nonlinearity : the stresses are dependent on the strains in a nonlinear way. 
• Local nonlinearity : the geometry or the boundary conditions of the structure change during the 

solving of the equations. 

 
These three types of nonlinearities will be examined in detail in the following chapters. 
For a complete overview and theoretical background, reference is made to [1], [2], [3], [4], [5] and [6]. 
 
To be able to use nonlinearities in SCIA Engineer this functionality should be enabled in the Project data 
dialogue: 

 
 
And in the right column the necessary nonlinearity should be activated. 
 

3.2 Nonlinear Combinations 
 
During a linear analysis, the principle of superposition is valid: the load cases are calculated and the 
combinations are composed after the calculation. 
 
For a nonlinear analysis, this principle is not valid anymore. The combinations have to be assembled before 
starting the calculation. In SCIA Engineer, this is done by defining nonlinear combinations . 
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A nonlinear combination is defined as a list of load cases where each load case has a specified coefficient. 

 
 
The type of the combination, Ultimate  or Serviceability , will determine what type of code check (ULS or 
SLS) can be performed for the specified combination.  
 
It is important to keep in mind that as each combination requires its own calculation, no sub-combinations 
can be generated for a nonlinear calculation. This means that the options ‘envelope’ or code combinations 
are not available. It is however possible to generate all the required nonlinear combinations based on the 
existing combinations for the linear calculation. This can be done using the New from combination  button.  
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In this window we first need to specify the type of combination to import, linear, or an envelope or Eurocode 
combination. The difference between both is that a linear combination will only create one nonlinear 
combination, but the other types could generate multiple combinations. The number of nonlinear 
combinations that will be generated for the selection is displayed on the bottom left.  
 
When choosing for the envelope type, the filter option becomes available. This option can be very interesting 
when a big amount of combinations are being generated. A lot of combinations that each require a separate 
calculation can lead to very long calculation times. To limit this, the filter offers the following options:  

 
 

• All = the number of nonlinear combinations equal the number of linear combinations in the envelope 
combination 

• All dangerous = a dangerous combination is one that creates an extreme effect in some member in 
the structure. That extreme effect can be an internal force or stresses in the extreme fibers of the 
section. Linear results will be used in order to estimate which members are getting these extreme 
effects. These are however based on linear results, so be careful as these aren’t necessarily all the 
dangerous ones in terms of the nonlinear calculation.  

• Most dangerous = it is possible to specify how many dangerous combinations are considered. This 
can be useful when you want to run a quick analysis with a lower amount of dangerous 
combinations. However, the safer option is to use the filter for all dangerous combinations and the 
safest is to use all. 
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Notes: 
• The combinations defined as linear combinations can be imported as nonlinear combinations. It is 

however important to keep in mind that during a nonlinear calculation no combinations are 
generated. This implies for example that code specific combinations must first be exploded to linear 
combinations. These linear combinations can then be imported as nonlinear combinations. 
This method makes sure that the code coefficients and relations between the load cases are 
correctly taken into account for the nonlinear calculation. 

• To view the extreme results for the nonlinear calculation, the nonlinear combinations can be grouped 
within a result class. 

• The amount of nonlinear combinations is limited to 1000. 
 

3.3 Calculation methods & settings 
 
In the solver settings, different methods can be found for the execution of the calculation method as well as 
different settings for the calculation.  

 

3.3.1 Solver settings 
In a nonlinear calculation, it is no longer possible to compute a solution for the structure in one single step. 
Instead the calculation will be an iterative procedure. In each iteration the software will make a guess at the 
solution and then evaluate if this guess is accurate enough to considerate as a solution. If not, another 
iteration will be calculated until the required accuracy is reached and the guess is accepted as the final 
solution. How the guesses are made depends on the chosen calculation method, which will be explained 
over this chapter. First, let us discuss the other solver options:  

• Number of increments : For the sake of robustness or accuracy it can sometimes be advisable to 
apply the loading in smaller steps (or load increments) instead of all at once. If a higher number than 
1 is entered here the load will be divided into steps, and an equilibrium will be searched for the first 
load step before adding on the next piece of loading, until the entire load is added and the final 
solution is reached.  

• Maximum iterations : As mentioned before, the solver will iterate until the required accuracy is 
reached and only then stop its calculation. However it may be that the loading diagram has no 
solution, or that the chosen calculation method is not adequate and will need a huge amount of 
iterations before ever reaching a solution. To prevent being stuck in extremely long calculations you 
can limit the maximum number of iterations here.  

• Solver precision ratio : This parameter controls how the solver decides if the result of an iteration is 
accurate enough to stop the calculation. The convergence criterium is the following, with i the results 
of the current iteration and i-1 the result of the previous iteration:  

 
A coefficient value higher than 1 means that the tolerances will be smaller, hence the calculation will 
be more accurate. A coefficient value lower than 1 means that the tolerances will be larger, hence 
the convergence will be achieved more easily. In some case of heavy nonlinearity (e.g. cable or 
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membrane structures), it might be necessary to use less strict convergence criteria (e.g. ratio = 0.1) 
to allow for proper convergence of the analysis. Note that even with a ratio = 0.1, the convergence 
criteria remain very tight. 

• Solver robustness ratio : This parameter affects the damping (speed of change) of the stiffness and 
internal forces of nonlinear hinges, supports, members. It is not possible to exactly describe it, 
because it is always a little different in different cases and types. It influences the convergence of 
nonlinear calculation with local nonlinearities on 1D members, hinges and with nonlinear surface 
support independently on selected method of calculation. A high value of this parameter ensures a 
more stable but slower convergence of the calculation. It can help in case of sensitive nonlinear 
analysis where convergence is problematic. A more detailed explanation can be found in the final 
chapter of this manual.  

 

3.3.2 Picard 

The default calculation method is the Picard method. It uses a secant line to predict possible solutions for an 
equilibrium. It is quite fast for basic nonlinearities (f.e. tension only elements, pressure only supports) and 
uses only one force increment. The method is very robust, but a bit slower than the other options. It is a good 
alternative for when the Newton-Raphson method fails.  

 
 

For big calculations it can be interesting to combine the methods and use the Picard method for its 
robustness in the first few iterations, but increase the speed by using Newton-Raphson in the following 
iterations. This can be done by choosing ‘Picard and Newton-Raphson’ and then inputting how many 
iterations should first be performed using Picard:  

 
 



Advanced concept training – Nonlinear & Stability 

BV – 2021/11/19  23 

3.3.3 Newton-Raphson 

The Newton-Raphson method makes its guesses for the equilibrium solution by computing the stiffness 
matrix of the structure in each step. This means that the iterations themselves will be slower, but the guesses 
will be much better. Therefore, it will require just a few iterations to find equilibrium. This method is robust for 
most of problems, but may fail in the vicinity of inflection points in the loading diagram. It can provide a 
solution even for extremely large deformations. The accuracy of the method can be increased through 
refinement of the finite element mesh or by increasing the number of increments. For good results this 
method requires at least 4 subdivisions per 1D member. 
 
If a structure has large rotations, care should be taken to not exceed 5° of rotation per load increment.  
 
In some specific cases a high number of increments may solve even problems that tend to a singular 
solution which is typical for the analysis of post-critical states. 

 

3.3.4 Modified Newton-Raphson 

This method is very similar to the Newton-Raphson method, with the only difference that the stiffness of the 
structure is only computed in the first iteration. The same stiffness is then used for all the other iterations, 
making them faster but less efficient than their non-modified version. This method can be especially 
interesting for very large structures, where computing the stiffness matrix in every step would lead to very 
high calculation times. It can also prove to be more robust in passing inflection points in the loading diagram. 
It also requires at least 4 subdivisions per 1D member.  
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Geometrical Nonlinearity – also possible with Conce pt edition 
 
The options described here for the geometrical nonlinearities are also possible with a Concept edition . So 
the Professional edition is not required for this chapter, except for the stability calculation (and the calculation 
of αcr as explained in the first chapter). 
 
For geometrical nonlinearities, the nonlinear behaviour is caused by the magnitude of the deformations. 
Take for example a simple beam: during a linear analysis, the relative deformation of the end nodes, in the 
direction of the beam axis is dependent on the strain of the beam. Due to a curvature of the beam, the 
distance between the end nodes is changed. This implicates that the total strain is now not solely dependent 
on the displacement. 
 
This relation can now be looked upon for different cases: 

a) Small displacements, small rotations and small strains; 

b) Large displacements, large rotations and small strains;  

c) Large displacements, large rotations and large strains; 
 
In SCIA Engineer, methods a) and b) have been implemented for the analysis of geometrical nonlinear 
structures. Method c) with large strains is less common in structural applications (for example rubber) and 
not present in SCIA Engineer. 
 
Method a) will be calculated with a 2nd order calculation method, like Timoshenko; method b) with a 3rd order 
method. An explanation about the methods and their workings is given at the end of this chapter. A 1st order 
method is used when geometrical nonlinearities are not taken into account. 
 
To activate the Geometrical Nonlinearity, the functionality Nonlinearity > Geometrical nonlinearity  must be 
activated. 
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4.1. Overview 
Global analysis aims at determining the distribution of the internal forces and moments and the 
corresponding displacements in a structure subjected to a specified loading. 
 
The first important distinction that can be made between the methods of analysis is the one that separates 
elastic and plastic methods. Plastic analysis is subjected to some restrictions.  
 
Another important distinction is between the methods, which make allowance for, and those, which neglect 
the effects of the actual, displaced configuration of the structure. They are referred to respectively as 
second-order theory  and first-order theory  based methods.  
 
The second-order theory can be adopted in all cases, while first-order theory may be used only when the 
displacement effects on the structural behavior are negligible. 
 
The second-order effects are made up of a local or member second-order effects, referred to as the P-δ 
effect, and a global second-order effect, referred to as the P-∆ effect. 
 

 
 
On the next page an overview of the global analysis following the EN 1993-1-1, chapter 5, will be given: 

• All the rules in this overview are given in the EN 1993-1-1 art. 5. For each step the rule will  be 
indicated. The first rule (�cr > 10) will be explained in EN 1993-1-1 art. 5.2.1(3). 

• In this overview 3 paths are defined: 
o Path 1: In this path a first order calculation will be executed 
o Path 2: In this path a second order calculation will be executed with global (and bow) 

imperfections. 
o Path 3: In this path a second order calculation will be executed with the buckling 

shape of the construction as imperfection. 
• The calculation will become more precise when choosing for a higher path. 
• The lower paths will result in a faster calculation, because a first order calculation can be executed 

without iterations, but this first-order theory may be used only when the displacement effects on the 
structural behavior are negligible. 

• In the next paragraphs the rules in this overview will be explained. 
 

To take into account all nonlinearities in the model, nonlinear load combinations are made. 
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5.2.2(3)c 

5.2.2(3)b 

5.2.2(5) 

5.2.2(7)b 

5.3.2(11) 

5.2.2(7)a 

5.2.2(3)a 

5.3.2(6) 

5.2.1(3) 

No Yes 

No Yes 

e0 if 
required 

e0 in all 
members 

Yes No 

αcr ≥ 10 

 
NEd > 25% Ncr 

(member) 

Members 
with e0 

αcr ≥ 3 

Increase sway 
effects with: 

crα
1

1

1

−
 

ηcr 

1b 2b 2c 3 

Global Imperfection φ 

2a 1a 

1st Order Analysis 2nd Order Analysis 

lb taken equal to L 

Structural Frame Stability 

Section Check 

Stability Check in plane 

Stability Check out of plane + LTB Check 

lb based on a global 
buckling mode 

 
With: 

• ηcr elastic critical buckling mode. 
• L member system length 
• lb buckling length 

 
Path 1a specifies the so called Equivalent Column Method. In step 1b and 2a “lb may be taken equal to L”. 
This is according to EC-EN so you don’t have to calculate the buckling factor =1. 
In further analysis a buckling factor smaller than 1 may be justified. 
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4.2. Alpha critical  
The calculation of alpha critical is done by a stability calculation in SCIA Engineer.  
 
According to the EN 1993-1-1, 1st Order analysis may be used for a structure, if the increase of the relevant 
internal forces or moments or any other change of structural behaviour caused by deformations can be 
neglected. This condition may be assumed to be fulfilled, if the following criterion is satisfied: α�� 	 JBCJKL M 10 for elastic analysis 

 
With:  

• αcr: factor by which the design loading has to be increased to cause elastic instability in a global  
mode 

• FEd:  design loading on the structure 
• Fcr: elastic critical buckling load for global instability, based on initial elastic stiffnesses 

 
If αcr has a value lower then 10, a 2nd Order calculation needs to be executed. Depending on the type of 
analysis, both Global and Local imperfections need to be considered. 
 
EN1993-1-1 prescribes that 2nd order effects and imperfections may be accounted for both by the global 
analysis or partially by the global analysis and partially through individual stability checks of members. 
 
The calculation of Alpha critical and also Path 3 from the diagram of the previous paragraph will be explained 
in the chapter “Stability”. 
 
 

Example: Imperfections2D.esa 
 
The diagram is now illustrated on a steel frame including a global imperfection. This benchmark project is 
examined in detail in references [19] and [22]. 
 
A stability calculation for the frame gives a critical load factor αcr of 13,17 > 10 
 
This indicates that 2nd order effects are negligible and a 1st order analysis may be used for the structure. 
 
Path 1a  can thus be followed and a 1st order  calculation is executed. 
 
A steel code check gives the following results: 
 

 
 
 
When Path 2a  is followed, using a global imperfection and a 2nd order  calculation according to 
Timoshenko , the steel code check shows the following: 



Advanced Concept Training – Nonlinear & Stability 

28  BV – 2021/11/19 

 
 
It can be seen that the results are practically the same which is as expected since the αcr is larger than 10.  
 
The input of imperfections and execution of a stability calculation will be regarded in detail further in this 
course. 
 

 

4.3. Imperfections 
 
When performing a nonlinear calculation, it is possible to input initial geometrical imperfections: initial 
deformations and curvatures. These imperfections take into account the fact that the structure is for example 
a bit inclined instead of perfectly vertical or that the members are not completely straight. 
 
To input geometrical imperfections, the functionality Nonlinearity > Initial imperfections  must be activated. 
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For each nonlinear combination, the imperfections can then be set. 

 
 
Difference is made between Global imperfections  (Initial deformations) and Bow Imperfections  
(Curvatures). 
 

4.3.1. Global frame imperfection ϕ 

The nodal coordinates define the geometry of the structure. Using initial deformations as global 
imperfections, additional displacements (in X and Y direction) can be inputted. These displacements will thus 
alter the geometry. 
 
The structure itself can therefore be modelled as straight; the inclination is given by the global imperfection. 
 
The global imperfection can be set in the following ways: 

• Simple Inclination 
• Deformation from Load case 
• Inclination Functions 
• Buckling Shape 

 

Simple Inclination 

The imperfection is defined as a simple inclination. The inclination is defined in mm per m height of the 
structure. More specifically a horizontal displacement is given in the global X and/or Y direction which has a 
linear relation to the height (global Z direction). 

Deformation from Load case 

The imperfection is defined by the displacements of a specified load case. This option can be used to take 
into account for example the imperfections due to the self-weight. Especially for slender beams this can be 
important. 
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Inclination Functions 

The imperfection is defined by a deformation-to-height curve, similar to the Simple Inclination. The curve can 
then be assigned to an appropriate nonlinear combination.  
These inclination functions are entered through Initial deformations : 

 

 
When the type is set to Manual input , the function can be inputted by specifying the height and the 
horizontal displacement. 

 
 
The type Factor  allows a factor to be inputted at each height. In the definition of a nonlinear combination, a 
manually inputted function can then be multiplied by this factor function. 
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When choosing EN 1993-1-1 art. 5.3.2(3) , the inclination function is calculated according to the code. As 
shown during the 2nd Order calculations, Eurocode 3 ref.[26] defines the global imperfection the following 
way: 

 

φ 	 1200 ∙ αO ∙ αP 

With: 
• αO 	 ;√O but 

;R S αO S 1,0 

• αP 	 >0,5 T1 � <PU 

• h The height of the structure in meters 
• m The number of columns in a row including only those columns which carry a vertical load NEd  

not less than 50% of the average value of the vertical load per column in the plane  
considered. 
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These parameters can be inputted after which the imperfection is automatically calculated: 

 
 
An inclination function is defined independent of an axis. This means that the same function can be used to 
define the displacement in X in function of Z, or Y in function of Z, or X in function of Y, … All of this, as well 
as the sign, can be defined in the nonlinear combinations. 

 

The axis in big letters (X, Y, Z) are the axis that will be inclined. The small letter axis (dx, dy, dz) is the 
direction of this inclination. Generally you will only use dx-Z to incline the vertical axis in the x-direction and 
dy- Z to incline the vertical axis in the y-direction.  
 
The Sense  option allows the imperfection to be applied in the positive or negative direction (according to the 
chosen global direction). This way, a nonlinear combination can for example be copied, where the original 
has a positive sense and the copy a negative sense to take into account both possibilities. 
 
Instead of the Sense , the Factor  function can be applied as specified above. The values of the factor 
function will be multiplied with the values of the defined inclination function. 
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Buckling Shape 

As an alternative to global and local imperfections, paragraph 5.3.2(11) of Eurocode 3 Ref.[26] allows the 
use of a buckling shape as a unique imperfection. For this option the Professional or Expert edition is 
necessary.  
 
To input geometrical imperfections, the functionality Nonlinearity > Initial imperfections and Stability must 
be activated. 
 

 
 
Since the buckling shape is dimensionless, Eurocode gives the formula to calculate the amplitude ηinit of the 
imperfection. In Ref.[28] examples are given to illustrate this method. In this reference, the amplitude is given 
as follows: 

ηWXWY 	 e[ ∙ N��E ∙ I\ ∙ η��,P]^" ∙ η�� 

e[ = α ∙ `λa − 0,2b ∙ cdeAde ∙ <fg∙`hibj
klm<fn∙`oibj for /̅ > 0.2 

 
With: 

• λa = >AdeABC  

• α imperfection factor for the relevant buckling curve. 
• χ  reduction factor for the relevant buckling curve, depending on the relevant cross-section. 
• NRk  characteristic resistance to normal force of the critical cross-section, i.e. Npl,Rk. 
• Ncr  elastic critical buckling load. 
• MRk  characteristic moment resistance of the critical cross-section, i.e. Mel,Rk or Mel,Rk as relevant. 
• ηcr  shape of the elastic critical buckling mode. 
• η��,P]^′′  maximal second derivative of the elastic critical buckling mode. 
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The value of ηinit can then be entered in the field Max deformation . 

 
 

4.3.2. Initial bow imperfection e 0  

 
During a linear calculation, the members are taken to be ideally straight. Using bow imperfections, a local 
curvature can be defined for each element. A normal force in a member will thus lead to additional moments. 
These additional moments shall only be taken into account for members with compressive forces. 
To obtain correct results using bow imperfections, it is required to refine the number of 1D mesh elements . 
 
The local imperfection can be set in the following ways: 

• simple curvature; 
• according to buckling data. 

 
SCIA Engineer will automatically apply the curvature in the following way, which is in most cases the de-
favourable sense:  
After the first iteration step, the deflection in the middle determines the sign of the initial bow imperfection. If 
there is no deflection the alternating pattern is used and the beam will deform with a sinusoidal form through 
its nodes.  

Simple Curvature 

Using this option, a curvature can manually be inputted. This curvature will be used for all members in the 
project. This method is quite convenient when the same type of cross-section (buckling curve) is used 
throughout the project like for example scaffolds, framework,… 
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According to Buckling Data 

A bow imperfection according to buckling data allows you to specify different curvatures for each used 
buckling data. In the System lengths and buckling settings  properties of a member, the bow imperfection 
can be set, first for the span y-y and then for z-z. 
 

 
 
By default the bow imperfection is set to ‘From setup ’. In this case the member will follow the default setting 
from the steel setup:  
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As seen during the 2nd Order calculations, Eurocode 3 Ref.[26] defines the initial bow imperfection using the 
following table: 
 

 

 

 
 
Where L is the member length. 

 
When the options EN 1993-1-1 Table 5.1 elastic/plastic  are chosen, SCIA Engineer will check the buckling 
curve of the member and will apply the specified imperfection automatically on the member. This 
imperfection is always applied which corresponds to Path 2c  of the diagram seen during the 2nd Order 
calculations. 
 
The options EN 1993-1-1 Table 5.1 elastic/plastic  – if required  will apply the imperfection only if the normal 
force NEd in a member is higher than 25% of the member’s critical buckling load Ncr as specified in Eurocode. 
This corresponds to Path 2b  of the diagram. 
 
When selecting Manual input of Bow Imperfection , the imperfection can manually be inputted using the 
tab System lengths and buckling settings. 

 
 
This way, the imperfection can be manually inputted for each member. This is in contrast to the Simple 
Curvature  where the same bow imperfection is applied to all members. 
 
When using bow imperfections it is important to set correct reference lengths for buckling since these lengths 
will be used to calculate the imperfection. 
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Example: Imperfection_Manual.esa  
 
In this project, the principle of a bow imperfection is illustrated for a simple beam.   
The beam is modelled once as ideally straight (B1). Next the beam is modelled as curved with a deflection at 
midpoint of 200mm (B2). In the third case, the beam is taken as straight and a bow imperfection of 200mm is 
manually set through the Buckling Data (B3). 
 

 
 
The tab System lengths and buckling settings of B3 shows the following: 

 
 
The three beams are loaded by a normal force of 5 kN. Those with a deflection of 200 mm, are expected to 
have a moment of 1 kNm  in the middle of the beam. 
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The moment diagram after a nonlinear calculation  shows the following: 

 
 
As expected, the beam B1 does not produce a bending moment. Both the curved beam and the beam with 
imperfection yield the 1 kNm. 
 
This example shows that the bow imperfection corresponds to a curved calculation model. 

 
 

Example: Imperfection_Self_Weight.esa  
 
A tube on two supports is loaded by its self-weight and a compression load of 20 kN. 
The tube is manufactured in S235, has a cross-section RO 48,3 x 3,2 and length 5m. 
A linear calculation  results in a bending moment of 0,109 kNm : 

 
 
This moment is caused entirely by the self-weight of the tube: 

• Area: 453 mm² = 0,000453 m² 
• Volumetric mass: 7850 kg/m³ 
• Length: 5m 
• Loading caused by the self-weight: 7850 kg/m³ x 0,000453 m² x 9,81 m/s² = 34,88 N/m  

= 0,03488 kN/m 
• Moment caused by the self-weight: (0,03488 kN/m x 5m x 5m) / 8 = 0,109 kNm  
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The self-weight causes a deformation of 11,659 mm 
 

 
 
Due to the fact that the self-weight causes this deformation, the compression force of 20 kN will lead to an 
additional moment.  
 
To see this effect in detail, a nonlinear analysis  is carried out which takes into account the deflection 
caused by the self-weight. The deformation of the self-weight can thus be set as a global imperfection . 

 
 
The nonlinear calculation  results in a moment of 0,342 kNm  

 
 
This value can be calculated as follows: 

• Imperfection due to the self-weight: 11,659mm = 0,011659m 
• Compression force: 20 kN 
• Additional Moment: 20 kN x 0,011659m = 0,23318 kNm 
• Moment caused by the self-weight: 0,109 kNm 
•  Total moment: 0,109 kNm + 0,23318 kNm = 0,342 kNm  

 
It is clear that taking into account the deflection of the self-weight has a large influence on the results. In this 
example, the bending moment increases with more than 200%. Especially for slender beams the 
imperfection due to self-weight can be important. 
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4.3.3. Example Global + Bow imperfection 

In this chapter a general example of the global and bow imperfections in SCIA Engineer. 
 

Example: Steel_Depot.esa  
 
To illustrate the use of imperfections, both sway imperfections and bow imperfections are inputted on the 
columns of a steel depot. 
 
The structure has the following layout: 

 
 
The diagonals have been inputted as tension only  members.  
Inclination functions  are defined according to the code  so the initial sway is calculated automatically: 
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The system lengths and buckling groups  of the columns is edited to specify bow imperfections EN 1993-
1-1 Table 5.1 : 

 
 
Since global and local imperfections are used for the columns, a buckling check needs not to be executed 
conform Path 2c  of the diagram seen during the 2nd order calculations. To take this into account in SCIA 
Engineer, the buckling factors can be manually set to a low value so buckling will not be normative. 
 
The Fundamental ULS combination according to Eurocode can then be imported as nonlinear combinations. 
The bow imperfection is set according to buckling data  and the global imperfections are set through the 
inclination functions .  
 
Since sway imperfections need to be considered in one direction at a time, the nonlinear combinations are 
taken once with the sway in X-direction and once with the sway in Y-direction. 
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If required, this number of combinations can de doubled to change the sense of the sway imperfections. 
 
To obtain correct results for the bow imperfections, the finite element mesh is refined. 

 
 
A 2nd Order  calculation can then be carried out using Timoshenko’s method . 
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The Steel Code check for the mid columns yields the following result. 

 
 
 
Since both global and local imperfections have been inputted, only the section check and the lateral torsional 
buckling check are relevant. In this example, member B22 produces the largest check on the compression 
and bending check. 
 

 

4.4. Calculation methods for geometrical nonlineari ty 

4.4.1. 2nd order: Timoshenko 

 
For 2nd order calculations SCIA Engineer uses the so called Timoshenko  method (Th.II.O) which is based 
on the exact Timoshenko solution for members with known normal force. It is a 2nd order theory with 
equilibrium on the deformed structure which assumes small displacements, small rotations and small strains. 
 
When the normal force in a member is smaller than the critical buckling load, this method is very solid. The 
axial force is assumed constant during the deformation. Therefore, the method is applicable when the normal 
forces (or membrane forces) do not alter substantially after the first iteration. This is true mainly for frames, 
buildings, etc. for which the method is the most effective option. 
 
The influence of the normal force on the bending stiffness and the additional moments caused by the lateral 
displacements of the structure (the P-Δ effect) are taken into account in this method.  
 
The difference between 1st, 2nd and 3rd order calculation is nicely illustrated in the picture below. 
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If the members of the structure are not in contact with subsoil and do not form ribs of shells, the finite 
element mesh of the members must not be refined. 
 
The method needs only two steps, which leads to a great efficiency. In the first step, the axial forces are 
solved. In the second step, the determined axial forces are used for Timoshenko’s exact solution. Further 
iterations are only needed if other nonlinearities are present in the structure. The original solution was 
generalised in SCIA Engineer to allow taking into account shear deformations. 
 
The applied technique is the so called ‘total force method’ or ‘substitution method’. In each iteration step, the 
total stiffness of the structure is adapted and the structure is re-calculated until convergence. This technique 
is illustrated in the following diagram. 
 

 
In this figure, the stiffness K is divided in the elastic stiffness KE and the geometrical stiffness KG. The 
geometrical stiffness reflects the effect of axial forces in beams and slabs. The symbol u depicts the 
displacements and F is the force matrix. 
 
The criterion for convergence is defined as follows: ∑`u^,W; + u\,W; + ut,W; b − ∑`u^,Wf<; + u\,Wf<; + ut,Wf<; b∑`u^,W; + u\,W; + ut,W; b ≤ 0,005/(precision ratio) 

 
With:  

• ux,i displacement in direction x for iteration i. 
• uy,i displacement in direction y for iteration i. 
• uz,i displacement in direction z for iteration i. 

 
  

 Start 

Stop 

Calculate KE 

KG = 0 

K = KE - KG 

Solve K.u = F 

Convergence 
in u? 

Calculate KG 

No 

Yes 
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The diagram is illustrated on the following figure. 
 

 
 
The choice of the Timoshenko Method and the maximal amount of iterations can be specified through 
Calculation, Mesh > Solver Setup. 

 
 
 
 

Example: Timoshenko.esa  
 
In this benchmark example, a frame is calculated both in 1st and 2nd Order using the Timoshenko method. 
The influence of the 2nd Order effects is seen to be significant. 
 
The results are compared with the results from reference [7] ‘Stahl im Hochbau’ p256. 

 Stahl im Hochbau SCIA Engineer 
M21 602.2 ( 227.1 ) kNm  605.97 ( 227.08 ) kNm 
M32 506.0 ( 224.9 ) kNm 503.38 ( 224.86 ) kNm 
M34 779.9 ( 343.0 ) kNm 771.54 ( 342.92 ) kNm 

 
The results between brackets are those for the first order analysis.  
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The Moment-diagram for the 1st Order analysis  shows the following: 

 
A significant increase of the moments is seen for the 2nd Order analysis : 

 
 
 

4.4.2 3rd order 

 
For 3rd order calculations several methods are available. Each of those iterative processes have been 
explained in chapter 3.3. They can be selected in the solver settings, after selecting a 3rd order calculation.  
 

 
 
The exact process will now be explained for the Newton-Raphson  method (Th.III.O), which is based on the 
Newton-Raphson method for the solution of nonlinear equations. 
 
This method is a more general applicable method which is very solid for most types of problems. It can be 
used for very large deformations and rotations; however, as specified the limitation of small strains is still 
applicable.  
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Mathematically, the method is based on a step-by-step augmentation of the load. This incremental method is 
illustrated on the following diagram: 

 
 
The following figure shows this process graphically. 
 

 
 
In this figure, the tangential stiffness KT is used. The symbol u depicts the displacements and F is the force 
matrix. 
 

 Start 

Stop 

Choose ∆F 
u0 = 0 
F0 = 0 

F = F0 + ∆F 

Determine KT at F0 

Solve KT. ∆u = F 

Convergence 
in u? 

u0 = u 
Determine F0 

No 

Yes 

Any ∆F left? 

u = u0 + ∆u 

No 
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The original Newton-Raphson method changes the tangential stiffness in each iteration. There are also 
adapted procedures which keep the stiffness constant in certain zones during for example one increment. 
SCIA Engineer uses the original method. 
 
As a limitation, the rotation achieved in one increment should not exceed 5°. 
 
The accuracy of the method can be increased through refinement of the finite element mesh and by 
increasing the number of increments. By default, when the Newton-Raphson method is used, the number of 
1D elements  is set to 4 and the Number of increments  is set to 5.  
 
In some cases, a high number of increments may even solve problems that tend to a singular solution which 
is typical for the analysis of post-critical states. However, in most cases, such a state is characterized by 
extreme deformations, which is not interesting for design purposes. 
 
The choice of the Newton-Raphson Method, the amount of increments and the maximal amount of iterations 
can be specified through Calculation, Mesh > Solver Setup. 

 
 
As specified, the Newton-Raphson method can be applied in nearly all cases. It may, however fail in the 
vicinity of inflexion points of the loading diagram. To avoid this, a specific method has been implemented in 
SCIA Engineer: the Modified Newton-Raphson  method. 
 
This method follows the same principles as the default method but will automatically refine the number of 
increments when a critical point is reached. This method is used for the nonlinear Stability calculation and 
will be looked upon in Chapter 6. 
 
In general, for a primary calculation the Timoshenko method is used since it provides a quicker solution than 
Newton-Raphson due to the fact Timoshenko does not use increments. When Timoshenko does not provide 
a solution, Newton-Raphson can be applied. 
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Example: N_R_Beam.esa 
 
This project is used to illustrate the capability of the Newton-Raphson method regarding large deformations 
and large rotations.  
The structure consists of a cantilever beam which is loaded by a moment at the free end. The rotation at the 
free end is given by: 

φ 	 M ∙ LE ∙ I  

 
When ϕ = 2π, the beam will form a complete circle. The moment required for this rotation is: 

M;? 	 2π ∙ E ∙ IL  

 
The member considered has a length of 10m and a cross-section type IPE200. The parameters in this case 
are: 

• E = 210000 N/mm² 
• L = 10000 mm 
• I = 1.943 107 mm4 

 
This leads to a moment M2π=2563,73 kNm . 
 
Since the rotation in one increment is limited to 5°, about 80 increments are needed. To obtain precise 
results, a dense mesh is required. 
 
A calculation using Newton-Raphson with 80 increments and 40 mesh elements for the beam gives the 
following results: 
 

 
 
The displacement of nodes  shows the following for fiy : 
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Example: N_R_Membrane.esa  
 
This project illustrates the (positive) influence of the membrane forces on the results.  
 
A steel plate is loaded by a surface load, perpendicular to the member system-plane. A 1st Order  calculation 
gives the following deformations: 

 
 
A 3rd Order  calculation using Newton-Raphson  will take into account the development of membrane forces 
in the plate. These tensile membrane forces will have a positive effect on the stiffness on the plate and will 
thus reduce the deformations.  
 
The results are showed below.  
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Remark: as explained before, Timoshenko is not valid for high deformations. So for this example, 
Timoshenko would lead to incorrect results and this method does not take into account (positive) influence of 
the membrane forces on the results. The deformations calculated with Timoshenko are the following: 
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Local Nonlinearity  
 
The local nonlinearities can be defined for 1D members, connections between 1D members, 2D members 
and supports. 
 
The following types have been implemented in SCIA Engineer: 

• Beam local nonlinearity; 
• Beam local nonlinearity including initial stress; 
• Nonlinear member connections; 
• Support nonlinearity; 
• Pressure only elements; 
• 2D membrane elements. 

 

5.1. Beam Local Nonlinearity – also available in th e concept edition 
The options described in this chapter are also possible with a Concept edition . So the Professional edition 
is not required for this chapter. 
 
To input local nonlinearities for 1D members, the functionality Nonlinearity > Beam local nonlinearity  must 
be activated. 
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After activating the functionality you can introduce 1D nonlinearities.  

 
 

 
 
The following types are available: 

• Pressure only; 
• Tension only; 
• Limit force; 
• Gap element; 
• Initial stress. 

 
All those options are explained with examples in the chapters below. 
 

5.1.1 Members defined as Pressure only / Tension on ly 

• Pressure only: the member is only active under pressure (i.e. strut, …) 
• Tension only: the member is only active under tension (i.e. anchor, diagonal, …) 

 
When using this type of beam nonlinearity, it can happen that numerically a very small pressure/tensile force 
remains in the member, mostly due to the self-weight. This value will always be negligible compared to the 
other force components in the member. 
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Example: Tension_Only.esa  
 
A 3rd order  calculation is executed using Newton Raphson , including global imperfections. 
The diagonals are designated as ‘Tension-only ’ members. 
 
The normal forces for a linear analysis  show that extreme compression results are obtained in the 
diagonals. This will inevitably lead to failure due to buckling. 

 
 
The normal forces for the nonlinear analysis  shows that diagonals are now only subjected to tension thus 
buckling will not occur anymore. Only very small compression forces will appear in the diagonals. 
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Notes: 
• It’s important to keep in mind that ‘Tension only ’ does not change anything for shear forces and 

moments. The only component which cannot occur is compression, but the member can still be 
subjected to bending, torsion, ... 
To specify that a member can only be subjected to normal forces, the FEM type  of the member can 
be set to axial force  only . 

 
When using this, you must be absolutely sure that bending effects cannot occur in reality!  
Also beware that no hinges  should be added on members with axial force only, as these degrees of 
freedom are already free and this will lead to an instability in the calculation. 

• The Calculation protocol for the Nonlinear calculation shows extra information concerning the 
applied nonlinearities, number of iterations per combination, … 
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Example: Mechanism.esa 
 
When using beam nonlinearities, it is important to make sure that not too many elements are eliminated. 
 
A common error is the creation of a mechanism due to the fact too many elements have been designated 
tension only/pressure only and thus no solution can be found. This principle is illustrated in the following 
project. 
 
A steel frame has been modelled with hinged connections between the elements. The diagonals have been 
specified as Tension only . 

 
 
Due to for example a roof load, both diagonals are subjected to compression. This is not possible for 
Tension only  members so both members are eliminated causing a global instability of the frame. This can 
be overcome by using the modified Newton-Raphson or by inputting a very small horizontal force.  
 

 

5.1.2 Members with Limit Force 

A member with limit force acts in the structure until a specified limit is reached after which the member will be 
eliminated from the calculation or yields plastically. 

 
 
The Direction  is used to specify in which zone the limit acts: the tension zone or the compression zone. 
 
When the limit is reached, it can be specified in the Type  field how the member should act. The member can 
be eliminated from the structure (Buckling ) or the member can stay in the structure but with the limit force as 
maximal axial force (Plastic yielding ). 
 
The limit itself is defined in the field Marginal Force . A negative value must be specified for a compression 
limit and a positive value for a tension limit. 
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Example: Limit_Force.esa  
 
In this project, a frame is modelled in which one diagonal has a compression limit  of -30 kN. 
 
For the left frame, the type is set to Buckling , for the right frame the type is set to Plastic yielding . 

 
 
A linear analysis  shows the following normal forces in the diagonals of both frames: 

 
 
A nonlinear analysis , taking into account the limit force gives the following results for the normal forces: 

 
 
In the left frame, the diagonal has buckled so the tensile force in the remaining diagonal is augmented. In the 
right frame, the diagonal stays in the structure but yields plastically and thus acts at the limit force of -30 kN. 
 
The deformed structure for the nonlinear analysis  shows the following: 

 
Due to the fact one diagonal has buckled in the left frame, larger horizontal deformations occur. 
 

 



Advanced Concept Training – Nonlinear & Stability 

58  BV – 2021/11/19 

5.1.3 Members with gaps 

There are various connection and support conditions used in a real structure. It may happen that a beam is 
not attached rigidly to the structure but "starts its action" only after some initial change of its length. The 
beam thus has to have a certain translation in its local x-direction before it becomes active. This behaviour 
can be inputted using gap  elements. 

 
 
The Type  field is used to specify if the member is active only in compression, only in tension or in both 
directions. 
 
The value of the translation can be inputted in the displacement  field. The gap can be defined at the 
beginning or at the end of the beam using the position  field. 
 
Gap members in tension only can for example be used to model a rope: the rope can only work in tension 
but becomes active only after a certain translation. Gap members in both directions are frequently used in 
scaffolding structures. 
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5.2. Beam Local Nonlinearity including Initial Stre ss 
 
To input local nonlinearities for 1D members, including initial stresses, following functionalities must be 
activated: 

• Nonlinearity; 
• Nonlinearity > Beam local nonlinearity; 
• Nonlinearity > Geometrical nonlinearity; 
• Cables. 

The Initial stress functionality is a standard functionality of SCIA Engineer, it is hidden and always enabled 
by default. 

 
 
Then introduce a beam nonlinearity on your member.  

 
 
Two extra types are now available: 

• Members with Initial Stress; 
• Cable Elements. 
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5.2.1 Members with Initial Stress 

 
Tensile forces in elements augment the stiffness of the structure. Compression forces reduce the stiffness. 
Adding initial stresses into the structure can therefore influence the stiffnesses and resulting deformations 
greatly. They are especially useful for cables, which will be looked at in the next part.  
 
Initial stress in SCIA is regarded as follows: 

• The element in question is taken from the structure. 
• The initial stress is put on the element through the defined axial force. 
• The element is put back into the structure. 

 
It is clear that when the element is inserted into the structure, the initial stress will partly be given to other 
members thus the inputted force will not stay entirely in the member in question. This is why the internal 
forces in the results will be different from the inputted starting values. 
 
Notes: 

• A positive axial force signifies a tensile force; a negative axial force signifies a compression force. 
• Initial Stress is mostly used in conjunction with a 2nd Order analysis. 

 
There are two ways to enter initial stresses into a model. The first why is by adding the nonlinear data ‘initial 
stress’ or a cable with initial stress values into the model, and then choosing for the option Stress from 
member nonlinear data  in the solver setup , together with Initial stress . 
 
The second option is the Stress from load case  option. Here you can select a load case and the internal 
forces caused by this load case will be used as the initial state for the calculation. 
 
Initial stresses (both from load case or member data) are also used for the modal analysis, making it possible 
to introduce some part of nonlinear behavior in dynamic analysis. This is very useful to account for 2nd order 
and pre-tensioning effects on cables.  
 

 
 
In theory, when using correctly defined values of the cross-section properties (surface A, moment of inertia I, 
modulus of Young E), a beam nonlinearity with Initial Stress can also be used to model straight cables with 
large pre-stress forces. Both Timoshenko  and Newton-Raphson  methods can be applied in this case. 
 
In general however, for cables the use of the specific cable element  is advised in conjunction with the 
Newton-Raphson  method. 
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Example: Initial_Stress.esa 
 
In this project, a simple frame is modelled. The diagonal has a RD30 section and is given an Initial Stress by 
means of a tensile force  of 500 kN.  

 
 
In the left frame, the initial stress will immediately be distributed to the column. In the right frame, the extra 
support will prohibit this. 
 
A nonlinear analysis , taking into account the initial stress gives the following results for the normal forces: 

 
 

As specified, in the left frame, the initial stress is immediately distributed to the rest of the structure so the 
tensile force of 500 kN is not found entirely in the diagonal. In the right frame, the force cannot be distributed 
due to the support so the 500 kN stays in the diagonal. 
 
This principle is even more clear when looking at the deformed mesh for the nonlinear analysis :  
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5.2.2 Cable Elements – Not available in the Profess ional edition 

Since SCIA Engineer version 21.1, cables are fully supported in the 64bit version in the default post-
processing environment. For cable analysis the module sens.03 is necessary. This module is included in the 
Expert and Ultimate edition. 
 
A cable element is an element without bending stiffness (Iy and Iz ≅ 0). During the solving of the equations 
this behavior is taken into account, so only axial forces (in tension only) will occur and you will obtain zero 
values for the internal forces Mx, My, Mz, Vy and Vz. The displacements (in the intermediate nodes) have thus 
been calculated without bending stiffness. 
 
The cable type is a special type of a beam nonlinearity, which can be applied on 1D members in a model. 
You will need to create nonlinear combinations to take into account this nonlinear property during the 
analysis. A geometrical nonlinear analysis should be executed by calculating with a 3rd order analysis with 
the Newton-Raphson calculation method. 

Theoretical background 

A curve formed by a hanging cable is called a "Catenary". With relatively small bending (height - sag roughly 
10% of its length) the curve can be approximated by a parabola (this approach was implemented previously 
in the 32bit version of SCIA Engineer in the post-processing environment ‘v16 and older’), but such 
approximation however becomes imprecise with greater sag / length ratio (and for different heights of the begin 
and end nodes of the cable). 

The catenary curve is linearly approximated into a polyline. The approximation points (nodes) are calculated 
from the catenary equation defined by two edge points of the beam and its parameter a, which is defined as a 
quotient (normal force / cable weight per unit length). The normal force is defined via the nonlinearity 
parameters and the cable weight per unit length is calculated from the cross-section and material parameters. 
Formula of the general catenary equation: 

y 	 a ∙ cosh }x − ka � + c 

Parameters k and c represent the horizontal and vertical shifts of the curve, respectively.  
The relation between catenary length s, vertical span of two definition points v and their horizontal span H is: 

�s; − v; = 2 ∙ a ∙ sinh } H2a� 

You have full control of the catenary curve approximation precision. A general curvature approach has been 
utilized. Using the curvature (parameter defining how much the curve bends at the given point) the radius of 
the circles (of the same curvature as the curve in the touching point) is calculated. Concept of the 
approximation error is graphically described in the figure below: 

 
The detailed background (including formula to calculate the value of sag) can be found on our help-pages: 
https://help.scia.net/webhelplatest/en/#analysis/nonlinear_analysis/cables/cable.htm 
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Modelling 

In order to apply the cable nonlinearity to 1D elements, the functionalities Nonlinearity and Cables should be 
turned on in the Functionality tab of the Project settings dialog. When the Cables functionality is turned on, 
automatically the functionality Geometrical nonlinearity is turned on as well. 
 
You can assign the nonlinearity 1D for a 1D member via Input Panel > workstation Structure > category 
Boundary conditions > Nonlinearity 1D: 

 
 
Following parameters are available for the type cable: 

 
 

• Normal force [kN]: value of the pre-stressing axial force (positive) 
• Self-weight:  determines, whether the cable is subjected to self-weight 
• Pn [kN/m]:  specifies the value of the additional load (so other than self-weight) 
• Direction of load: specifies the load direction (Pn and self-weight) 
• Approximation error [m]: determines the maximal allowed distance between point on the analytically  

defined catenary curve and the projection of this point (in the direction of  
load) on the linearly approximated polyline of the cable. 

• Maximum sag [m] automatically calculated value, it is the maximal distance (in the direction of  
load) between a node of the catenary curve and its projection on the straight  
line connecting both ends of the cable 

 



Advanced Concept Training – Nonlinear & Stability 

64  BV – 2021/11/19 

Alternation of these parameters automatically causes the geometry change of the catenary curve. The 
geometry is also automatically altered after the coordinate change of the begin or the end node of the cable. 
If there are more cables attached to each other, e.g. through the internal nodes, these mutual connections are 
preserved after the geometry alternation of the cable member and the relative positions of the internal nodes 
within the cable length remain the same. 

 

Analysis 

The average number of 1D mesh elements on straight 1D members (linear approximation between the nodes 
of the catenary curve) needs to be at least 4 (in the mesh setup). 

A nonlinear combination needs to be defined, and the geometrically nonlinear analysis calculated. Large 
deformations needs to be considered (3rd order), along with the Newton-Raphson method of calculation (to 
be defined in the solver setup). If there are problems with convergence, increase the values of Number of 
increments, or Maximum iterations. Additionally, the Solver precision ratio or Solver robustness ratio 
might be altered to have an influence on the convergence criteria as well. 
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Results 

In order to see the real scale of the results (the default scale is exaggerated artificially since the biggest value 
is scaled to 1 m), it is necessary to set the real ratio and the multiplier equal to 1 within the Scale settings: 

 
 

 
 

Notes: 
• The input of the cable element only defines the initial shape / sag. Afterwards the cable can be 

loaded by real loads. The normal force after calculation will therefore be different to the inputted 
initial normal force N. 

• Adding a cable into the model will adapt the mesh also for the linear calculations. This means that 
the linear calculation may become unstable when a cable is added, and a nonlinear calculation 
becomes necessary to obtain results. 
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Example: Chandelier.esa 
 
To illustrate the application of cables, a chandelier is modelled. A circular ring hangs with cables to one 
support at the top. These cables have a normal force of 1 kN and self-weight activated. The cables are also 
connected with each other by other cables with the same properties. 
 

 
We consider a nonlinear combination NC1 which contains the self-weight of the structure and three points 
loads of 1 kN. In the 3D displacements we notice that the load straightens the curved elements: 
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In the cables, the only non-zero values of internal forces are for the normal forces N (tension). On the right 
picture we can see that there are no bending forces present in the cables: 
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Example: Spire.esa 
 
Another application of cables is a spire. The mast is supported by several cables which have a prestress 
force of 5 kN and self-weight activated. 

 
The 3D displacement for nonlinear combination NC1 (which includes a horizontal wind load) for example 
shows the following: 
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5.3. Nonlinear Member Connections 
 
When inputting hinges on beam elements, it is possible to input a nonlinear function for each degree of 
freedom (ux , uy , uz, fix , fiy , fiz ). The function can signify the relation between moment and rotation or force 
and displacement. 
 

 
 
When using nonlinear functions, it is very important to input a relevant linear stiffness. This value is used for 
the linear calculation, and during the first iteration of the nonlinear calculation.  
 
The nonlinear functions can be entered in this menu:  

 
 

 
 
For member connections, the nonlinear functions can be defined for translation or rotation. When defining a 
function, it is very important to check the signs of the function values. The defining magnitudes for nonlinear 
rotation functions are the internal forces, for nonlinear translation functions the displacements. 
This implies that these functions are inputted in the first and third quadrant. 
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One must also make sure that the function does not contain any vertical parts, as this would lead to 
problems in the calculation with multiple possible solutions for one value. When entering a vertical part, the 
following message will be displayed:  

 
 
In older versions of SCIA engineer it was possible to introduce vertical parts. Therefore, when opening an old 
project, it is possible that it contains such a function. In this case an error message will appear when running 
the calculation:  

 
 
For the end of the function, it is possible to select one of three options: 

• Free: When the maximal force is reached, it stays at that value and the deformation will rise 
uncontrolled. 

• Fixed: When the maximal deformation is reached, it stays at that value and the force component will 
rise. 

• Flexible: The relation between force component and deformation is linear. 
 
SCIA Engineer also allows creating a new function from the already defined functions to provide an easy 
input of complex functions. 
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Example: Connection.esa 
 
In this example, an industrial hall is calculated using algorithms to calculate the moment-rotation diagram for 
bolted and welded beam-to-column connections. SCIA Engineer allows the calculation of these diagrams 
and the automatic application of the diagram as a nonlinear spring function for member connections. For the 
theoretical background, reference is made to the “Advanced Training Steel” and ref. [13]. 
 
The geometry of the structure is shown in the following figure: 
 

 
 
The structure is calculated in 2nd Order using Timoshenko’s  Method. The diagonals have been set as 
Tension-only . 
 
In node N2 a bolted beam-to-column connection is modelled: 
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The Moment-Rotation diagram is calculated by SCIA Engineer using the algorithm of the EN 1993-1-8. 

 
 
Together with the calculated diagram, automatically a nonlinear function is created: 
 

 
 
The function characterizes both tension-on-top and tension-at-bottom. 
 
This function can then be assigned to the hinge defined in node N2: 
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5.4. Support Nonlinearity 
SCIA Engineer allows the following types of nonlinear supports: 

• Tension only / Pressure only supports; 
• Nonlinear springs for supports; 
• Friction supports. 

5.4.1. Tension only / Pressure only Supports 

To input nonlinearities for supports, the functionality Nonlinearity > Support nonlinearity/basic soil spri ng  
must be activated. 

 
 
Supports with tension can be automatically eliminated. This is mostly used for slabs on subsoil, column 
bases of for example scaffoldings, struts, … 
 
The following types of supports can be eliminated if tension occurs: 

• Nodal Support; 
• Line Support; 
• Subsoil. 

 
For nodal supports or line supports it is possible to specify a translation degree of freedom as Rigid 
pressure only  or Flexible pressure only . 
 
Subsoils are always regarded as pressure only  for a nonlinear calculation, if the functionality Support 
nonlinearity/Soil spring  is ticked on.  
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Example: Subsoil.esa 
 
In this example, a slab on subsoil is calculated. The slab is loaded by a point force in the middle.  
The deformation for the linear analysis  shows the following: 

 
 
Especially in the corners, tensile contact stresses are expected: 

 
 
A nonlinear analysis , taking into account the pressure-only characteristic of the subsoil shows the following 
deformation: 
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As can be seen, the slab will rise at the corners so no more tensile contact stresses are obtained: 

 
 
The pressure stresses in the middle have increased which is expected when the slab can rise at the corners. 
 
Notes: 

• When using subsoil, it is important to adequately refine the mesh in order to produce precise results. 
• When calculating following the Winkler theory, the Pasternak values (C2) must be set to zero. 

 

 
 

5.4.2 Nonlinear Springs for Supports 

As seen for nonlinear member connections, it is also possible to use nonlinear functions for supports. For 
each degree of freedom (X, Y, Z, Rx, Ry, Rz) a nonlinear function can be inputted. The function can signify 
the relation between moment and rotation or force and displacement. 
 

 
 
When using nonlinear functions, it is very important to input a relevant linear stiffness. This value is used 
during the first iteration of the nonlinear calculation (and during a linear calculation). 
 
The definition of the nonlinear functions is exactly the same as seen with nonlinear member connections. 
 
In addition to nodal supports, a nonlinear function can also be used for a subsoil under a plate. 
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Example: Support_Function.esa 
 
In this example, the use of a nonlinear function for a support is illustrated. A simple beam on two supports is 
modelled.  

 
The translation Z  of both supports has been defined as a nonlinear function: 

 
The beam is loaded by a point force at one end. The value of the point force is taken as 1kN and 1.4kN. 
 
A nonlinear analysis  shows the following deformation for the load of 1kN: 

 
This value can manually be approximated as follows: 

Ut 	 −100 mm−1328 N + 628 N ∙ (−1000 N + 628 N) = −53,14 mm 

 
For the load of 1.4 kN, the fixed end of the function is reached thus the maximal deformation of 100 mm is 
obtained: 
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Example: Pallet_Racking.esa 
 
In this example, the calculation of a pallet racking system is shown according to ref. [9] Eurocode ENV 1993-
1-1 and ref. [10] FEM 10.0.02. This last reference gives field test methods which allow the definition of 
moment-rotation diagrams for beam-to-column connections and column supports. 
 
The beam-to-column connections and column supports can be defined by means of nonlinear functions. 

 
The following nonlinear spring is defined for the column supports: 

 
 
The beam-to-column connections are defined by the following nonlinear characteristic: 
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Example: Culvert.esa 
 
This project illustrates the use of nonlinear functions to model for example the soil under a culvert. 
The culvert has the following shape: 

 
 
Nonlinear supports have been defined with appropriate functions to model the behaviour of the soil: 

 
 

 
 
 
A nonlinear analysis gives the following deformation pattern for combination NC2: 
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5.4.3 Friction Supports 

Friction supports can be used to model the fact that a reaction component is dependent on another 
component. The horizontal component is for example dependent on the vertical component. When the 
friction force is surpassed, the support slips through resulting in large deformations. 
 
To input friction supports, both the functionalities Nonlinearity > Support nonlinearity/Basic soil spri ng 
and Friction support/Soil spring  must be activated. 

 
 
When entering a nodal support, the option Friction  can be chosen for the translational degrees of freedom 
(X, Y, Z). 

 
 
The option From Reaction  is used to specify which force component causes the friction force. 

X, Y, Z: The final limit force can be calculated from the reaction in a specified direction. If a 
support in the X-direction is being defined, it can be said that the friction force 
should be determined from the reaction calculated in either the Y or Z direction. The 
friction force is calculated from the following formula: 

 zx Rmju ⋅  

XY, XZ, YZ: The final limit force can be calculated as a compound friction. Only one of the stated 
options is offered for each direction. E.g. if a support in the X-direction is being 
defined, it can be said that the friction force should be determined from the reactions 
calculated in the Y and Z direction. The friction force is calculated from the following 
formula: 

   22
zyx RRmju +⋅  
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X+Y, X+Z, Y+Z: The same as above applies here. A different procedure is however used to   

calculate the limit force. E.g. for a friction support in the X-direction the following 
formula is employed: 

 zxyx RmjuRmju ⋅+⋅  

 
In these formulas, mju  specifies the coefficient of friction. 
 
In the field C flex , the stiffness of the support can be inputted. 
 
Notes: 

• Friction can be inputted in one or two directions. It is not possible to define friction in all three 
directions since otherwise the "thrust" cannot be determined. 

• When simple friction (X, Y, Z) is defined in two directions, the option Independent is available. This 
specifies that the friction in one direction is independent on the friction in the other direction. 

• Composed friction (e.g. YZ or Y+Z) can be specified only in one direction. 
 
Friction supports can be used for several types of structures. Nearly every support which isn’t rigidly 
connected to the surface on which it stands is subjected to friction. Examples include base jacks of 
scaffolding structures, supports on an inclined surface, pipes in boreholes,… 
 
 

Example: Scaffolding.esa 
 
This project illustrates the use of friction supports for a scaffolding structure. The scaffold has the following 
geometry: 

 
 
The base jacks are inputted as friction supports. Since a base jack, by default, is not connected to the 
surface, the Z-direction is defined as rigid Pressure-only . Both horizontal degrees of freedom X and Y are 
defined as Friction , dependent on the reaction Z.  
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When large wind loads are taken into account, for example due to netting, large horizontal reaction forces 
are expected in the base jacks. When these reactions surpass the friction force, the support slips through. 
 
After a nonlinear  analysis  of the scaffold, the deformed mesh  for combination NC4 shows the following: 

 
 
In the middle base jacks, the friction force is clearly surpassed and thus the supports slip through. To avoid 
this, the reaction in Z-direction must be augmented thus extra dead weight like ballast will be required or the 
base jacks must be fixed to avoid slipping. 
 
Note: the functionality Nonlinear Line Support  defines a specific type of soil spring developed for the Pipfas 
project (Buried Pipe Design). 
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5.5 2D Elements 

5.5.1 2D Membrane Elements – Not in Professional Ed ition 
This option is implemented in module sens.03 and included in the Expert edition. So with the Professional 
edition the option of Membrane elements as described in this chapter, will not be possible. 
 
Membrane elements are defined as shell elements which have no flexural stiffness and no axial compression 
stiffness. Membrane elements can thus be used to model canvas, nets, etc. that are subjected to axial 
tension. 
 
To obtain realistic results, a 2nd order calculation needs to be executed using the Newton-Raphson method. 
 
To input 2D membrane elements, the functionalities Nonlinearity > Geometrical nonlinearity  and 
Membrane Elements  must be activated. 

 
 
When defining the 2D element, the option Membrane  must be chosen as FEM nonlinear model. 

s 
Notes: 

• Membrane elements can only be modelled in a General XYZ environment. 
• Due to the fact the flexural rigidity is zero, no ribs, orthotropic parameters or physical nonlinear data 

can be inputted on a membrane element. 
• Since a membrane element has no axial compression stiffness, no concrete calculation can be 

performed on this type of element. 
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Example: Membrane.esa 
 
For this example, the 32bit version of SCIA Engineer is needed. In this project, a textile canvas is modelled. 
At the four corners of the canvas, steel cables are attached. Two cables are subjected to a tensile force of 
50kN in horizontal direction. 

 
 
Since the canvas has an initial position 0,5m lower than the endpoint of the cables, the canvas will first be 
pulled straight. 
 
Since both cable  and membrane  elements are used, a 3rd order nonlinear analysis  is executed using the 
Newton-Raphson  method. 
 
The deformed mesh for the nonlinear  analysis shows that the canvas has been pulled straight: 
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When the scale of the results is augmented, the typical deformation of the membrane element can clearly be 
seen: 

 
 
The tensile forces for the cable elements are shown on the following figure: 

 
 
The principal  membrane force n1 shows the tensile forces in the canvas: 
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In the same way, n2 can be shown: 

 
 
The results show the 2nd order effect: due to the tensile forces in one direction, the canvas obtains a stiffness 
which results in compression membrane forces. 
 

 

5.5.2. Pressure only 
To input pressure only for 2D elements, the functionality Nonlinearity and Compression - only 2D 
members must be activated. 
 

 
 
With this option, tension in 2D elements can be automatically eliminated. This is mostly used for masonry 
elements.  
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Example: PressureOnly.esa 
 
This project illustrates the use of pressure only elements. 
In this project two 2D-elements are modelled. The first one is modelled as an isotropic element with no 
nonlinearity, the second one is a pressure only element: 

 

  
 
 
When calculating those elements, for every mesh element a certain orthotropy will be inserted. At the first 
iteration step all the pressure only elements, will be calculated as an isotropic element. After the first 
calculation, SCIA Engineer will input another stiffness on all elements in tension. So a certain orthotropy will 
be created. With this stiffness the tension capacity of this element will decrease. After adapting the 
orthotropic parameters a new calculation will be performed. After this second iteration step again the 
elements in tension will get another stiffness. This process will be repeated until equilibrium is reached. 
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The difference between the isotropic and orthotropic elements can be clearly view looking at the principal 
normal force n1 for these members: 

 
 
In these results the real pressure of this element is visible for the right element. Looking at the trajectories of 
this normal force, the trajectory of the pressure force will be even more visible: 
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Physical Nonlinearity 
 
When the stresses are dependent on the strains in a nonlinear way, the nonlinearity is called a physical 
nonlinearity. 
 
In SCIA Engineer, the following types of physical nonlinearities have been implemented: 

• Plastic hinges  for Steel Structures 
• Physical nonlinear analysis  for Concrete Structures 
• General plastic analysis  for 2D elements 

 

6.1 Plastic Hinges for Steel Structures 
 
This functionality handles the plastic behaviour of 1D elements. When a normal linear calculation is 
performed and limit stress is achieved in any part of the structure, the dimension of critical elements must be 
increased. If however, plastic hinges are taken into account, the achievement of limit stress causes the 
formation of plastic hinges at appropriate joints and the calculation can continue with another iteration step. 
The stress is redistributed to other parts of the structure and better utilization of overall load bearing capacity 
of the structure is obtained. 
 
The material behaves linear elastic until the plastic limit is reached after which it behaves fully plastic. The σ-
ε diagram thus has the same shape as the Moment-Curvature diagram: 
 

M

k

Mp

 
 
The full plastic moment is given as Mp, the curvature as k. 
 
In SCIA Engineer, a plastic moment can only occur in a mesh node . This implies that the mesh needs to be 
refined if a plastic hinge is expected to occur at another location than the member ends. 
 
The reduction of the plastic moment has been implemented according to the following codes: EC3, DIN 
18800 and NEN 6770.  
 
There is off course a risk when taking plastic hinges into account. If a hinge is added to the structure, the 
statically indeterminateness is reduced. If other hinges are added, it may happen that the structure becomes 
a mechanism. This would lead to a collapse of the structure and the (nonlinear) calculation is stopped. 
 
On the other hand, plastic hinges can be used to calculate the plastic reliability margin of the structure. The 
applied load can be increased little by little (e.g. by increasing the load case coefficients in a combination) 
until the structure collapses. This approach can be used to determine the maximum load multiple that the 
structure can sustain. 
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To take into account plastic hinges for steel structures, the functionality Steel > Plastic Hinge analysis  must 
be activated. 

 
 
The choice of code which needs to be applied can be specified through Menu bar > Tools >  Calculation & 
Mesh > Solver settings. The no code option simply follows the EC-EN logic.  
 

 
 
It is not possible to choose on what members or in which nodes plastic hinges can be formed. If the 
functionality is activated, a plastic hinge will form wherever the moment resistance is exceeded regardless of 
the element’s plastic capacity.  
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Example: Plastic_Hinges.esa  
 
In this project, a continuous beam is considered. The beam has a cross-section type IPE 300 and is 
fabricated in S235.  
 
According to Eurocode 3, the plastic moment resistance around the y-axis is given by: 
 

 
 
For the beam (no normal or high shear force present) considered this gives the following: 

• fy = 235 N/mm² 
• Wpl,y =  6.28 105 mm³ 
• γM0 = 1.0 

 Mpl,y,d = 
���,�∙���l�  = 147,59 kNm 

 
A linear analysis  shows the following moment-diagram: 

 
 
A nonlinear analysis  taking into account plastic hinges gives the following result: 
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When the load is increased further, another plastic hinge will form in the middle of a span thus creating a 
mechanism. The nonlinear calculation will stop and a singularity message will be given: 

 
 
The animation window shows the expected scene, where an additional plastic hinge in the middle of the 
span leads to a mechanism: 

 
 

 

6.2 Physical Nonlinear analysis for Concrete Struct ures 
This topic is regarded in detail in the course “Advanced Training Concrete”. 
 

6.3 General Plastic analysis 
This functionality handles the plastic behaviour of any 2D members (plates, walls and shells). Four different 
criteria have been implemented to determine when the plastic behaviour is initiated: Von Mises, Tresca, 
Mohr-Coulomb and Drucker-Prager.  
 
The plastic behaviour of materials may be combined with other types of nonlinearities in SCIA Engineer. It 
can be activated in the material setup, after selecting the right functionalities. 
 
Note: general plasticity behaviour is not applied to 1D members. The 1D members that are present in the 
model will be considered as elastic.  
 

6.3.1 Yield criteria 
To determine whether the material should start behaving plastically, we first need to know if the yield 
strength has been reached. In SCIA Engineer, 4 different yield criteria have been implemented. Two for 
symmetrical, ductile materials (steel, aluminium,...): Tresca and Von Mises, and two for materials with 
different behaviour in compression and tension (concrete, masonry,...): Mohr-Coulomb and Drucker-Prager.  
 

Tresca 

The Tresca criterion is also known as the maximum shear stress theory (MSST) and the Tresca–Guest (TG) 
criterion. In terms of the principal stresses the Tresca criterion is expressed as: 

 
Where Ssy is the yield strength in shear, and Sy is the tensile yield strength. 
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On the picture below there is the Tresca–Guest yield surface in the three-dimensional space of principal 
stresses. It is a prism of six sides and having infinite length. This means that the material remains elastic 
when all three principal stresses are roughly equivalent (a hydrostatic pressure), no matter how much it is 
compressed or stretched. However, when one of the principal stresses becomes smaller (or larger) than the 
others the material is subject to shearing. In such situations, if the shear stress reaches the yield limit then 
the material enters the plastic domain. 

 
 

Von Mises 

This criterion suggests that the yielding of materials begins when the second deviatoric stress invariant J2 
reaches a critical value. For this reason, it is sometimes called the J2-plasticity or J2 flow theory. It is part of 
plasticity theory that applies best to ductile materials, such as metals. Prior to yield, material response is 
assumed to be elastic. 

In materials science and engineering the von Mises yield criterion can be also formulated in terms of the von 
Mises stress or equivalent tensile stress, σE, a scalar stress value that can be computed from the Cauchy 
stress tensor. In this case, a material is said to start yielding when its von Mises stress reaches a critical 
value known as the yield strength, σy. The von Mises stress is used to predict yielding of materials under any 
loading condition from results of simple uniaxial tensile tests. The von Mises stress satisfies the property that 
two stress states with equal distortion energy have equal von Mises stress. 

The Von Mises stress is expressed as:  

σ� 	 D12 ∙ ��σ<< − σ;;�; � �σ;; − σRR�; � �σRR − σ<<�; � 6 ∙ �σ<;; � σ;R; � σR<; �� 
Because the von Mises yield criterion is independent of the first stress invariant, I1, it is applicable for the 
analysis of plastic deformation for ductile materials such as metals, as the onset of yield for these materials 
does not depend on the hydrostatic component of the stress tensor, just like the Tresca criterion.  
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Drucker-Prager 

The Drucker-Prager yield criterion is similar to the von Mises yield criterion, with provisions for handling 
materials with differing tensile and compressive yield strengths. This criterion is most often used for concrete 
where both normal and shear stresses can determine failure. The Drucker–Prager yield criterion may be 
expressed as: 

 
Where � 	  ������  with Syc and Syt the uniaxial yield stresses in compression and tension respectively.  

If both are equal the formula reduces to von Mises.  
 
The image shows the Drucker–Prager yield surface in the three-dimensional space of principal stresses. It is 
a regular cone. 

 

Mohr-Coulomb 

The Mohr-Coulomb yield is similar to the Tresca criterion, with additional provisions for materials with 
different tensile and compressive yield strengths. This model is often used to model concrete, soil or granular 
materials. The Mohr–Coulomb yield criterion may be expressed as: 

 
Where � 	  ������ and � 	  �f<��<  

 
The parameters Syc and Syt  are the yield (failure) stresses of the material in uniaxial compression and 
tension, respectively. The formula reduces to the Tresca criterion if  Syc = Syt. 
 
On the picture there is Mohr–Coulomb yield surface in the three-dimensional space of principal stresses. It is 
a conical prism and determines the inclination angle of conical surface. 
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6.3.2 Finite element model 

Drilling rotations at each node is used for in-plane loading. This means that element has six degrees of 
freedom at each node and is therefore compatible with other types of elements (beam/solid elements).  
 
Within the element area the Gauss 2x2 quadrature points are used. Each of these Gauss quadrature points 
is realized by nine Gauss-Lobatto quadrature points throughout the thickness, so the four-node element has 
2x2x9=36 quadrature points in total.  

 
 
Due to these Gauss-Lobatto points the element can handle bending loading with high accuracy. In all of 
these points the nonlinear model is computed independently using the plane stress formulation. Linear 
transversal shear stiffness is assumed. 
 

6.3.1 Material properties 

Figure C.2 from EN 1993-1-5 is used for the material behaviour: 

 
The different models are: 

a) elastic-plastic without strain hardening 

b) elastic-plastic with a nominal plateau slope 

c) elastic-plastic with linear strain hardening 

d) true stress-strain curve modified from the test results as follows: 

 
In SCIA Engineer, a), b) and c) are implemented. 
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6.3.4 General plasticity in SCIA Engineer 

General plasticity is a specific type of nonlinearity in SCIA Engineer. This means that General plasticity  is a 
sub-functionality of the nonlinear analysis.  

 
 
The nonlinearity of materials is defined directly in the material library. See the property group Material 
behaviour for nonlinear analysis .  

 
 
By default, all materials in the library are set as elastic. This means, that the selected material will behave 
elastically during a nonlinear analysis. The plastic properties of materials are generic, code independent in 
SCIA Engineer and are therefore available for any material, regardless of the selected design code. 
 
Plasticity can be enabled by selecting a type of plastic behaviour. For steel, we can use Isotropic elasto-
plastic von Mises . It corresponds to a bilinear stress-strain relationship, identical in tension and compression. 
The plastic branch may have a slope (hardening modulus) or not. 
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The stress-strain relationship is automatically generated from 3 parameters: Young's modulus (elastic part), 
yield stress for uniaxial tension and, optionally, hardening modulus (slope of the plastic branch). 

 
 
Only the tension part of the diagram is defined, as it is related to a plastification condition in general 3D 
stress state in principal stress directions. Some plastification models allow for a different yield stress in 
compression, which is defined separately. There is no limit (ultimate) strain value for the analysis.  
 
When the actual strain value in the structure exceeds the defined diagram, the diagram is extrapolated, 
tangent to the last defined segment of the stress-strain relationship. The reason for that is, that the analysis 
would then fail and it would be impossible to find where the problem is located in the structure. It is therefore 
preferable, that the analysis continues and that you check the obtain strain values after the analysis. 

 
 
The following parameters define the nonlinear behaviour of the material in the material library: 
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• E modulus : Young’s modulus of the material which defines the slope of the elastic part of the 
stress-strain diagram 

• Material behaviour: t he type of material behaviour for the nonlinear analysis has to be selected 
o Elastic 
o Isotropic elasto-plastic, Tresca (ductile materials such as metal, steel, aluminium) 
o Isotropic elasto-plastic, von Mises (ductile materials such as metal, steel, aluminium) 
o Isotropic elasto-plastic, Drucker-Prager (materials with difference in compressive en 

tensile strength such as concrete and soil) 
o Isotropic elasto-plastic, Mohr-Coulomb (materials with difference in compressive en 

tensile strength such as concrete and soil) 
• Input type: d efines the definition of the plastic branch of the stress-strain diagram 

o Elasto-plastic: In the plastic domain, the stress remains constant when the strain 
increases 

o Elasto-plastic with hardening: In the plastic domain, the stress increases with the strain 
• Yield strength: e lastic limit for plastification due to shear 
• Hardening modulus: s lope of the plastic branch of the stress-strain diagram 

 
Note: Various types of nonlinearity may be combined in the same project. However it is not possible to 
cumulate several types of nonlinearity on the same 2D member. The property FEM nonlinear model will 
behave as follows, when combined with a plastic material: 

• Plastic material and 2D press-only behaviour: the press-only behaviour will be ignored and the 
2D member will behave as plastic. 

• Plastic material and membrane behaviour: the plastic behaviour will be ignored and the 2D 
member will behave as an elastic membrane element. 

 
When starting the analysis, a warning message will be displayed giving the same information about 
functionality conflicts. 
 

6.3.5 Checking strains 

 
When using general plasticity, the stresses in the material will be topped off at the yield strength (or a bit 
higher if strain hardening is used). To check if the structure is stable, we will therefore need to check 
something different than the stresses.  
 
A first indicator is of course if the nonlinear calculation can find a solution. If the stiffness matrix becomes 
singular when considering general plasticity, the plastic deformations could be so big that the structure 
becomes a mechanism and no solution is found. The structure cannot hold the loads.  
 
If the calculation succeeds, the check needs to be done on the amount of plastic strain.   It can be displayed 
in the results for 2D stresses, when changing the type of values to basic (in local axis) or principal (in 
principal axis) plastic strain.  
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Example: Plastic_Plate_Stresses.esa  
 
In this project, 3 vertical walls of different steel materials are loaded each time by the same vertical surface 
load of 242.90 kN/m². The value of the load is high enough to make sure that the Von Mises stresses in 
every wall are higher than the allowed yield strength fy of the steel materials. 
 
A linear analysis  shows the following results for the Von Mises stresses: 

 
 
As expected, the Von Mises stresses for every wall are exactly the same and are higher than the yield 
strength fy. 
 
For every used material, the following properties for the nonlinear analysis are inserted: 
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The nonlinear analysis  shows the following results for the Von Mises stresses: 

 
 
 

Example:  Beam_Column_Connection.esa  
 
The functionality General Plasticity  can also be used to model steel connections using finite elements to 
perform a plastic stress check.  
 
In this example, a bolted column-beam connection is modelled using 2D finite elements in SCIA Engineer. 
That way the plastic stresses can be calculated by performing a nonlinear analysis.  
 

Elastic results for (linear) combination CO2: 

 
 

Plastic results for nonlinear combination NC2: 
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Nonlinear Stability 
In this final chapter we will combine both the stability and nonlinear effects into a nonlinear stability 
calculation.  
 
As specified in the assumptions of the first paragraph: a stability calculation is by default a linear process. 
nonlinearities like friction supports, pressure only supports… are not taken into account. Specifically for this 
purpose, SCIA Engineer provides the use of a nonlinear stability calculation. This type of calculation has the 
following additions to the linear stability calculation: 

• Local nonlinearities are taken into account 
• 3rd order effects are taken into account using the Modified Newton-Raphson algorithm. 

 
Modified Newton-Raphson follows the same principles as the default method but will automatically refine the 
number of increments when a critical point is reached and will only update its stiffness matrix every N 
iterations. This method can therefore give precise results for post-critical states. 
 
SCIA Engineer will perform a 3rd order calculation taking into account local nonlinearities. After this 
calculation, the resulting deformed structure is used for a Stability calculation. As a result, the critical load 
factor of the structure is obtained for the structure including nonlinearities. 
 
To activate the nonlinear stability calculation, the functionalities Stability  and Nonlinearity > geometrical 
nonlinearity  must be activated. 

 
 
In addition, support and/or beam local nonlinearities can also be activated. 
 
  



Advanced concept training – Nonlinear & Stability 

BV – 2021/11/19  101 

The choice of the 3rd order theory, the amount of increments and the maximal amount of iterations can be 
specified in the solver settings. 

 
 
Since the nonlinear stability calculation automatically implies the modified Newton-Raphson method for the 
solver, this method cannot be adapted in the settings. The option is available for the sake of choosing a 
method for the normal nonlinear calculation. 
 
Since the modified Newton-Raphson method also uses load increments, it is important to set a right amount 
of increments. Therefore it is advised to choose for the Newton-Raphson method, so you can input the 
number of increments. 
 
The nonlinear stability calculation can then be selected in the calculation window: 

 
 

  



Advanced Concept Training – Nonlinear & Stability 

102  BV – 2021/11/19 

 

Example: Stability_Falsework.esa 
 
In this example, a stability analysis is carried out on a large falsework structure measuring 15m x 15m x 12m. 

 
 
All diagonals of the structure have been given a gap of 1mm . 

 
 

The structure is loaded by its self-weight, formwork and concrete for a total loading of +/- 18.000 tonnes. 
 
First a linear stability  calculation is carried out to evaluate the critical load factor. The number of 1D 
elements is set to 5 to obtain good results without severely augmenting the calculation time. 
 
The following result is obtained: 

 
 
The critical load factor is smaller than 10 which indicates that the structure is susceptible to 2nd order effects. 
Therefore a 2nd order calculation is carried out using Timoshenko . The number of increments is set to 5 and 
the maximal number of iterations is set to 50. 
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The 2nd order calculation leads to the following message: 

 
 
This implies that the 2nd order calculation does not converge to a result but leads to instability. The question 
now rises as to what causes this instability. 
 
This is the point where the nonlinear stability calculation comes in. During the linear stability calculation, the 
gap elements on the diagonals of the structure were not taken into account. A nonlinear stability calculation 
takes into account both 2nd order effects and the gap elements. 
 
The nonlinear stability  calculation gives the following result: 

 
 
This result gives a very important conclusion: the structure including all gap elements is not capable of 
supporting the loading. Only 20% of the loading can be supported before instability occurs. This is the 
reason why the 2nd order calculation does not pass. 
 
When local nonlinearities are used, it is mandatory to execute a nonlinear stability calculation to draw correct 
conclusions concerning the global buckling of the structure. 
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7. Troubleshooting 
In this final Chapter, some common failure messages are given which can occur during a nonlinear analysis. 
 

7.1 Singularity 

Singularity problems occur frequently during a nonlinear calculation. Messages of the following type are 
generated by SCIA Engineer: 
 

 
 
The singularity can be checked by running the check of singularities: 

 
 
The cause of these messages can be the following: 

• The structure is a mechanism: check supports, hinges, unconnected members, … 
• The structure becomes a mechanism by eliminating elements (members, supports, …) 

Examples include tension only diagonals which are all eliminated, a subsoil (only compression) 
which comes entirely under tension, … 

• The structure becomes unstable due to the creation of plastic hinges. 
• The entire structure or part of it buckles. In the stiffness matrix this implies that KG > KE 
• The instability is caused due to small section properties of manually inputted cross-sections. In 

many cases, the torsional resistance It is too small. 
• As explained in the theory, the Timoshenko method is not suitable when the normal force in a 

member is larger than its critical buckling load. In this case, Newton-Raphson should be applied. 
To find out which cross-section causes this problem, the sections can be modified alternately 
until the 2nd Order calculation passes. 
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7.2 Convergence 

 
If, during a nonlinear analysis the criterion of convergence is not met, messages of the following type are 
generated by SCIA Engineer: 

 
 
The cause of these messages can be the following: 

• Too few iterations have been specified in the Solver Setup. 
• The structure is close to instability. 
• Cyclic elimination of members or supports: the elements are eliminated during an iteration and 

are re-instated during the following iteration. 
• To examine this in detail, the calculation can be executed for e.g. three iterations: take iteration  

i-1, i and i+1 and compare the results.  
In these results, there will be a difference in one member (for example in one iteration the 
member is in tension, in the following iteration it is in compression).  

• If the nonlinear stability calculation does not converge, make sure 2nd order (Geometrical 
Nonlinearity) is activated as functionality. 
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7.3 Solver robustness ratio 

A typical use case for using the robustness ratio is a nonlinear calculation is stuck in some oscillation around 
the solution value, for instance: 

 

 
In such a case we would need to “stabilize” the convergence. This can be achieved by slowing down, or 
dampening the convergence. Let’s assume the following: 

• iteration 1 gives solution value S1  
• in iteration 2, the nonlinear process (e.g. NR) gives solution value S2  
• normally, we would just take S2 and continue to the next iteration, but if the values start 

oscillating wildly, it will not converge  
• Instead, we don't take S2 as result of the iteration, but some value in between, using the 

robustness ratio to determine how much of S1 is used in the new solution. An example of this 
(but NOT the formula used in SCIA Engineer) would be: 

 

Where R is the robustness ratio. If R=1 it will return standard, non-damped convergence. The higher the 
value, the more of S1 will be in the solution, the slower the convergence, but the more stable the calculation 
will be. The actual formula in SCIA is far more complex, but the principle remains the same.  
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